Справочный материал и примеры к выполнению контрольной работы по математике

Физика
Задачи
Алгебра
ТОЭ

Матрицы и определители

Задания для подготовки к практическому занятию Вопросы и задачи

Задания для подготовки к практическому занятию

Решить матричные уравнения АХ=В и YА=В.

Векторы

Найти площадь этого треугольника. Решение: Есть несколько способов найти площадь треугольника, мы воспользуемся способом, связанным с векторами, а именно – геометрическим смыслом векторного произведения. Согласно ему, площадь треугольника АВС равна половине модулю векторного произведения векторов .

Предел последовательности Напомним для начала, что числовая последовательность – это бесконечный упорядоченный набор чисел. Члены последовательности можно пронумеровать, так что каждому натуральному значению n (1,2,3,…) соответствует член последовательности (а1, а2, а3,…)

Вычислить  .

Предел функции

Производная функции

Производная и дифференциал. Исследование функций.

Неопределенный интеграл. Табличное интегрирование

Замена переменной; интегрирование по частям

Интегрирование выражений, содержащих квадратный трехчлен

Интегрирование рациональных функций Для того, чтобы проинтегрировать рациональную дробь (многочлен в числителе, многочлен в знаменателе), обычно нужно ее упростить (как вы помните, это значит – представить в виде суммы).

Интегрирование тригонометрических выражений С тригонометрическими интегралами мы уже встречались ранее. Их особенностью, пожалуй, можно считать обилие тригонометрических формул, позволяющих преобразовывать подынтегральное выражение, что часто позволяет его упростить. Способов такого преобразования, как и способов замены переменной в тригонометрическом интеграле обычно много, но для некоторых типов интегралов известны стандартные действия, приводящие к ответу наиболее коротким путем. Их описанию и посвящен рассматриваемый параграф лекций. На наш взгляд, приведенный там материал достаточно прост и показателен, сделаем только два замечания

Определенные интегралы, несобственные интегралы

Функции нескольких переменных Пример. Найти область определения функции

Двойной интеграл Отметим здесь, что при интегрировании функции z(x; y) по переменной х, так же как и при дифференцировании, считают y=const и пользуются обычными правилами вычисления интеграла. При этом пределы интегрирования могут зависеть от у (но не от х).

ОДУ первого порядка. Уравнения с разделяющимися переменными и однородные уравнения Линейные уравнения и уравнения Бернулли.

Уравнения в полных дифференциалах.

ОДУ высших порядков. Линейные уравнения с постоянными коэффициентами

Найти модуль и аргумент чисел  и . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

Вычислить значение функции  в точке , ответ представить в алгебраической форме комплексного числа

Определить вид кривой .

Проверить, может ли функция  быть действительной частью некоторой аналитической функции , если да – восстановить ее, при условии .

Найти область плоскости , в которую отображается с помощью функции  область :  плоскости .

Найти все лорановские разложения данной функции  по степеням . Указать главную и правильную части ряда.

Разложить в ряд Лорана функцию  в окрестности особой точки .

Вычислить интегралы от функции комплексного переменного

Вычислить интегралы, используя теорему Коши о вычетах

Изменить порядок интегрирования в интеграле .

Найти объем тела, ограниченного указанными поверхностями. Приведем решение двух задач на вычисление объемов тел, рассматривая тела с различной геометрией поверхности.

Найти объем тела  ограниченного поверхностями

Найти массу пластинки (): ,

Найти массу тела , ограниченного поверхностями: ; ; ; ; плотность массы тела .

Вычислить криволинейный интеграл

Вычислить массу дуги кривой () при заданной плотности :

Вычислить работу силы  при перемещении единичной массы вдоль кривой  линии пересечения двух поверхностей:  от точки  до точки 

Вычислить расходимость (дивергенцию) и вихрь (ротор) в произвольной точке , а также найти уравнения векторных линий поля градиентов скалярного поля .

Убедиться в потенциальности поля вектора ,

Исходя из определения производной, найти f ¢(0) для f(x)=

Найти производную показательно-степенной функции y=.

Для функции y(x), заданной неявно уравнением xey  yex+x=0, найти y¢x и y¢¢xx (аналитические выражения и значения в точке x0=0).

С помощью дифференциала функции вычислить приближённо   при x = 7,76.

Многочлен f(x)=3x4  22x3 + 60x2  73x + 39 по степеням x представить в виде многочлена по степеням (x  2).

Исследовать поведение функции в окрестности точки с помощью формулы Тейлора: f(x)=  ln2x, x0 =1.

Вычислить предел с помощью формулы Тейлора: .

Провести полное исследование поведения функции и построить её график:

Матрицы. Терминология Прямоугольная таблица действительных чисел

Принцип равенства Две действительные матрицы  и  называются равными (записывается ), если они имеют одинаковые размеры, т.е. числа строк и столбцов у этих матриц совпадают, и на одинаковых местах в этих матрицах стоят одинаковые элементы.

Сложение матриц Операция сложения определена лишь для матриц одинакового размера

Умножение матриц Скалярное умножение арифметических векторов Пусть .

Для того чтобы, существовало произведение   необходимо выполнение условия согласования , т.е. число столбцов матрицы  должно совпадать с числом строк матрицы  (или порядок строк матрицы  должен совпадать с порядком столбцов матрицы ).

Рассмотрим основные свойства умножения матриц

Теория делимости квадратных матриц Выше мы убедились, что арифметические операции над матрицами, прежде всего в части умножения, отличаются по своим свойствам от аналогичных операций над числами. Однако наиболее существенные отличия связаны с операцией деления.

Основные типы алгебраических структур

Пример. Множество  является мультипликативной группой, т.е. операция умножения матриц определяет на этом множестве структуру группы.

Элементарные преобразования над матрицами и элементарные матрицы

Нашей ближайшей целью является доказательство того, что любая матрица с помощью элементарных преобразований может быть приведена к некоторым стандартным видам. На этом пути полезным является язык эквивалентных матриц.

Пример Построить матрицу  приведённого вида,

Разложение матрицы в произведение простейших

1-й критерий обратимости матрицы. Для того, чтобы матрица  была обратимой, необходимо и достаточно, чтобы она была представима в виде произведения элементарных матриц. Достаточность. Элементарные матрицы обратимы, а произведение обратимых матриц есть матрица обратимая. Поэтому утверждение “матрица, представимая в виде произведения элементарных матриц, обратима очевидно.

Матричные уравнения Уравнение, называется матричным, если в качестве неизвестного оно содержит матрицу. Простейшие матричные уравнения имеют вид

Найти матрицу , если .

  Пример Найти матрицу ,

Найти матрицу .

Разложить матрицу  в произведение простейших. Выяснить, является ли матрица  обратимой, и в случае её обратимости найти матрицу , если .

 

Примеры решения и офрмления задач контрольной работы

Неопределенный интеграл

Пример . Найти интеграл . Решение. Воспользуемся формулой интегрирования по частям: .

Найти интеграл .

Определенный интеграл Вычисление определенного интеграла

Пример Вычислить интеграл . Решение. Для того, чтобы вычислить данный интеграл, воспользуемся основной тригонометрической заменой:

Приложения определенного интеграла Площадь плоской криволинейной трапеции. Пример. Вычислить площадь фигуры, ограниченной линиями: .

Вычисление длины дуги кривой. Пример. Вычислить длину дуги кривой: , между точками пересечения с осями координат. Решение. Данная кривая задана в параметрическом виде, то есть x и y зависят от параметра t. Поэтому, чтобы построить точку с координатами (x,y) нужно задать некоторое значение параметра и потом посчитать x и y .

Тройной интеграл в цилиндрических и сферических координатах

Вычислить тройной интеграл , где

Вычислить тройной интеграл , где

С помощью тройного интеграла наряду с другими величинами можно вычислить

Применение тройных интегралов. Масса неоднородного тела

Тройной интеграл равен произведению значения подынтегральной функции в некоторой точке области интегрирования на объем области интегрирования, т. е.

Цилиндрические координаты

Вычислим объем шара радиуса R. В этом случае подынтегральную функцию надо взять равной 1, и мы получим

Объём цилиндрического тела. Двойной интеграл. Пусть в некоторой замкнутой области D плоскости хОу определена ограниченная функция z = f(x,у), причём f(x,y)>0. К определению двойного интеграла приходим, вычисляя объём фигуры, основание которой - область D; сверху фигура ограничена поверхностью, уравнение которой z=f(x,y) боковая поверхность - цилиндрическая, образованная прохождением прямой, параллельной оси Oz вдоль границы L области D.

Вычисление двойного интеграла в декартовых координатах

Двойной интеграл в полярных координатах

Тройной интеграл в цилиндрических координатах Цилиндрические координаты при вычислении тройного интеграла удобно применять тогда, когда область V проектируется на одну из координатных плоскостей в круг или часть круга.

Криволинейный интеграл первого рода

Вычисление криволинейных интегралов 1-го рода

Криволинейный интеграл второго рода

Формула Грина. Условие независимости криволинейного интеграла второго рода от вида пути интегрирования

Поверхностный интеграл первого рода Пусть f(x,y,z) - функция, непрерывная на гладкой поверхности S. (Поверхность называется гладкой, если в каждой её точке существует касательная плоскость, непрерывно изменяющаяся вдоль поверхности).

Поверхностный интеграл второго рода

Изобразить на плоскости фигуру D. Вычислить массу пластины О с поверхностной плотностью распределения μ=μ(х, у). Рекомендуется использовать полярную систему координат.

С помощью двойного интеграла найти площадь фигуры, ограниченную заданными линиями.

Функция нескольких переменных и ее частные производные Определение функции нескольких переменных Если каждой паре (x, y) значений двух независимых друг от друга переменных x и y из некоторого множества D соответствует определённое значение величины z, то говорят, что z есть функция двух независимых переменных x и y, определённая на множестве D. Множество D называется областью определения функции z = z (x, y).

Полное приращение и полный дифференциал ФНП

Частные производные ФНП, заданной неявно

Экстремумы ФНП Локальные максимумы и минимумы ФНП Говорят, что функция z = f (x, y) имеет локальный максимум в точке (x0, y0), если существует окрестность точки (x0, y0), в которой выполнено неравенство f (x0, y0) > f (x, y) для всех точек (x, y) из этой окрестности, отличных от (x0, y0): .

Скалярное поле. Градиент. Производная по направлению

Функции комплексной переменной Определение и свойства функции комплексной переменной Пусть даны две плоскости комплексных чисел и на первой – множество D  комплексных чисел z = x + iy, где i – мнимая единица (i2 = –1), на второй – множество G комплексных чисел w = u +iv.

ПримерПроверить аналитичность ФКП .

Справочный материал к выполнению контрольной работы №2

Двойной интеграл Вычисление двойного интеграла в декартовых координатах

Вычисление тройного интеграла в декартовых координатах

Криволинейный интеграл II рода (по координатам)

Векторное поле Поток векторного поля через поверхность

Потенциальные и соленоидальные векторные поля Ротор векторного поля

Решение примерного варианта контрольной работы №1

Задача . Дана функция z = cos2(2x – y). Требуется: 1) найти частные производные  и ; 2) найти полный дифференциал dz;

Найти частные производные  и , если переменные x, y, и z связаны равенством 4x2 y ez – cos(x3 – z) + 2y2 + 3x = 0.

Дана функция двух переменных: z = x2 – xy + y2 – 4x + 2y + 5 и уравнения границ замкнутой области D на плоскости xОy: x = 0, y = –1, x + y = 3. 

Поверхность  задана уравнением z =  + xy – 5x3. Составить уравнения касательной плоскости и нормали к поверхности σ в точке М0(x0, y0, z0), принадлежащей ей, если x0 = –1, y0 = 2.

Дана функция комплексной переменной , где z = x + iy, и точка z0 = – 1 + 3i.

Решение примерного варианта контрольной работы №2

Задача . Используя двойной интеграл, вычислить статический момент относительно оси Ox тонкой однородной пластинки, имеющей форму области D, ограниченной заданными линиями: . Построить чертеж области интегрирования.

Вычислить работу силы при перемещении точки приложения силы вдоль заданной кривой L:  от точки B до точки C, если значения параметра t в точках B и C заданы: .

Задача.  Дано векторное поле  и уравнение плоскости d: 3x + y + 2z – 3 = 0. Требуется:

найти поток поля  через плоскость треугольника АВС где А, В, и С – точки пересечения плоскости d с координатными осями, в направлении нормали плоскости, ориентированной «от начала координат»; построить чертеж пирамиды ОАВС, где О – начало координат; используя формулу Остроградского-Гаусса, вычислить поток поля   через полную поверхность пирамиды ОАВС в направлении внешней нормали.

Проверить, является ли векторное поле силы  потенциальным или соленоидальным. В случае потенциальности поля найти его потенциал и вычислить с помощью потенциала работу силы  при перемещении единичной массы из точки M(0,1,0) в точку N(–1,2,3).

Радиоактивность