Моменты инерции сечения Статически неопределимые задачи Деформация изгиба Определение опорных реакций Расчет балок Способ сравнения деформаций Момент сил Расчет ферм Метод сечения Понятие об устойчивости

Лекции по сопромату, теория, практика, задачи

Деформации и перемещения при кручении валов.

Для вычисления деформаций вала при кручении воспользуемся формулой (2.7)

/f_17.gif          (2.17)

Деформация вала на длине z (взаимный угол сечений) равна

/f_18.gif          (2.18)

Если крутящий момент и величина GIp, называемая жесткостью вала при кручении, постоянны на всем участке интегрирования, то

/f_19.gif          (2.19)

Аналогично, для вала длиной l получим

/f_20.gif          (2.20)

Эта формула по своей структуре аналогична формуле для определения деформаций при растяжении - сжатии.

Угол закручивания, приходящийся на единицу длины, называют относительным углом закручивания. Он равен

/f_21.gif          (2.21)

Для обеспечения требуемой жесткости вала необходимо, чтобы наибольший относительный угол закручивания не превосходил допускаемого, т.е.

/f_22.gif          (2.22)

Эта формула выражает условие жесткости вала при кручении. В этой формуле /t2_7.gif- допускаемый относительный угол закручивания в радианах на единицу длины вала.

В большинстве случаев допускаемый относительный угол закручивания задают в градусах на 1 м длины, тогда из формулы (2.22) получим:

/f_23.gif          (2.23)

Угол /t2_7.gifвыбирают в зависимости от назначения вала и его размеров. Для валов средних размеров в "Справочнике машиностроителя" рекомендуется принимать допускаемый угол закручивания равным 0,5 градуса на 1 метр длины.

Из условия (2.23) можно определить диаметр вала по заданной жесткости. Получаем

/f_24.gif          (2.24)


Лекции по сопромату, теория, практика, задачи