Моменты инерции сечения Статически неопределимые задачи Деформация изгиба Определение опорных реакций Расчет балок Способ сравнения деформаций Момент сил Расчет ферм Метод сечения Понятие об устойчивости

Лекции по сопромату, теория, практика, задачи

Построение эпюр изгибающих моментов и поперечных сил.

Рассмотрим пример построения эпюр поперечных сил Q и изгибающих моментов Mx.

1. Изображаем расчетную схему (рис. 3.9, а).

2. Определяем реакции опор. Первоначально выбираем произвольное направление реакций (рис. 3.9, а)

/t3_5.gif

Так как реакция RB с минусом, изменяем выбранное направление на противоположное (рис. 3.9, б), а про минус забываем.

/3_9.gif

Проверка:

/t3_6.gifY = 0,
RA - 2qa + RB - qa = qa - 2qa + 2qa - qa = 0.

3. Расчетная схема имеет три силовых участка.

I участок АС: 0 < z1 < a. Начало координат выбираем в крайней левой точке А. Рассмотрим равновесие отсеченной части бруса (рис. 3.10).

В сечении возникают внутренние усилия:

поперечная сила

Q = qa = const

и изгибающий момент

Mx = qa * z1
при z1 = 0 Mx = 0; при z1 = a Mx = qa2.

II участок CB: 0 < z2 < 2a. Начало координат перенесено в начало участка С (рис. 3.11).

На этом участке

/t3_7.gif

при z2 = 0 Q = qa, Mx = -qa2;

при z2 = 2 Q = -qa, Mx = qa2.

/3_10.gif/3_11.gif

На 2-м участке в уравнении моментов аргумент z2 имеет 2-ю степень, значит эпюра будет кривой второго порядка, т.е. параболой. На этом участке поперечная сила меняет знак (в начале участка +qa, а в конце -qa), значет на эпюре Mx будет экстремум в точке, Q = 0. Определяем координату сечения, в котором экстремальное значение Mx, приравнивая нулю выражение поперечной силы на этом участке.

/t3_8.gif

Определяем величину экстремального момента (с учетом знака):

/t3_9.gif

III учаток BD: 0 < z3 < a. Начало координат на третьем участке помещено в крайней правой точке (рис. 3.12).

/3_12.gif

Здесь Q = qa = const; Mx = -qa*z3; при z3 = 0 Mx = 0; при z3 = a Mx = -qa2.

4. Строим эпюры Q и Mx (рис. 3.13, б и в).

/3_13.gif

5. Проверка построения.


РїСѓС…РѕРІРёРєРё женские РјРѕСЃРєРІР° Лекции по сопромату, теория, практика, задачи