Производные гиперболических функций Производная степенной функции Натуральный логарифм Найдём предел Найдём вторую производную функции

Начала линейной алгебры

Пример. Решить уравнение  при начальном условии y(1)=2. (Заметим, что в данном случае нельзя задавать начальное условие при x=0, так как это значение не принадлежит области B определения функции F

Для решения поставленной задачи можно было бы воспользоваться формулой (11), но мы пойдем другим путем: применим метод решения уравнений, которым была получена формула (11).

В нашем уравнении . Решение однородного уравнения  получается из формулы (10):

 . (12)

Реализуем теперь вариацию произвольной константы A, считая, что A=A(x) есть некоторая функция аргументаx. Тогда , и подставив это выражение вместе с приведенным выше выражением для y в исходное уравнение, получим:

 ,

откуда следует, что A¢(x)=x2 или . Если теперь подставить это в формулу (12), то получится общее решение исходного уравнения: . Спомощью начального условия найдем значение неопределенной константы C и выпишем решение поставленной задачи: .

Упражнения

1.Решить дифференциальные уравнения

1)

;

2)

;

3)

;

4)

;

5)

;

6)

;

7)

;

8)

;

9)

;

10)

.

11)

;

12)

;

13)

;

14)

;

15)

;

16)

;


На vldsp.ru стоимость приема косметолога в хабаровске.
Математика примеры решения задач