Курсовая
Контрольная
Конспекты
Физика
Энергетика
Математика
Лабораторные
Задачи
АЭС
Геометрия
Архитектура
Алгебра
Лабы
Сопромат
Информатика
ТОЭ

Начала линейной алгебры

Приведем примеры вычисления частных производных. Как говорилось выше, для вычисления частной производной по x функции z=f(x,y) нужно положить переменную y равной константе, а при нахождении частной производной по y нужно считать константой переменную x.

Примеры. 1. .

2.

Если частные производные функции z=f(x,y) существуют на некотором множестве, а точка, в которой вычисляются частные производные несущественна, то пользуются более короткими обозначениями:

 .

Тройной интеграл в сферических координатах Основные свойства и приложения криволинейного интеграла первого рода

Сами частные производные могут являться функциями от нескольких переменных на некотором множестве. У этих функций тоже могут существовать частные производные по x и по y. Они называются вторыми частными производными или частными производными второго порядка и обозначаются zxx¢¢,zyy¢¢,zxy¢¢ или . Согласно определению ; . Последняя частная производная второго порядка называется смешанной. Смешанная частная производная второго порядка, вообще говоря, зависит от того, в какой последовательности берутся переменные, по которым вычисляется производная. Так, производная zxy¢¢=(zx¢ )y¢ может не быть равной zyx¢¢=(zy¢ )x¢. Однако существует теорема, утверждающая, что если смешанные частные производные второго порядка непрерывны, то они не зависят от того, в какой последовательности вычислялись частные производные по x и по y. (Рекомендуем читателю самому убедиться в справедливости этой теоремы для функций, рассмотренных в приведенных выше примерах 1 и 2.)

Отметим очень важное отличие функции двух переменных от функции одной переменной. Из существования первых частных производных в точке не следует непрерывность функции в этой точке. Рассмотрим, например, функцию

 .

График этой функции во всех точках, не принадлежащих осям координат OX и OY, представляет собой плоскость, параллельную плоскости XOY, поднятую на 1. Сами эти оси координат также принадлежат графику рассматриваемой функции. Очевидно, что в точке (0,0) функция имеет частные производные по обоим аргументам, обе равные нулю. Очевидно также, что в любой окрестности точки (0,0) можно найти точку M такую, что f(M)=1, в то время как f(0,0)=0. Это означает существование разрыва функции в точке (0,0). (Пример взят из книги О.С.Ивашева-Мусатова “Начала математического анализа”).


Отзывы Рё комментарии Рѕ сайте: hydraweb,in. | Ссылка tor РЅР° hydra смотрите РЅР° http://hydra.com. Дизайнерские изделия из кожи смотрите на www.кожгалантерея-пошив-из-кожи-на-заказ.рф.
рюкзак опт
Купить диплом Чебоксары на http://russiann-diploms.com.

Радиоактивность

Экология
Инженерная графика
Курсовые
Лабораторные