Определенный интеграл
Рассмотрим фигуру, ограниченную графиком непрерывной, неотрицательной на промежутке [a;b] функции f(x), отрезком [a;b] оси X, и прямыми x=a; x=b. Такую фигуру называют криволинейной трапецией. На рисунке 2 криволинейная трапеция выделена штриховкой. Площадь S этой трапеции определяется формулой
.
Если f(x)<0 во всех точках промежутка [a;b] и непрерывна на этом промежутке (например, как изображено на рисунке 3), то площадь криволинейной трапеции, ограниченной отрезком [a;b] горизонтальной оси координат, прямыми x=a; x=b и графиком функции y=f(x), определяется формулой
.
Перечислим свойства определенного интеграла:
1)
(здесь k ‑ произвольное число);
2)
;
3)
;
4) Если cÎ[a;b], то
.
Из этих свойств следует, например, что
.
Все приведенные выше свойства непосредственно следуют из определения определенного интеграла.
Оказывается, что формула из пункта 4 справедлива и тогда, когда cÏ[a;b]. Пусть, например, c>b, как изображено на рисунке4. В этом случае верны равенства
.