Производные гиперболических функций Производная степенной функции Натуральный логарифм Найдём предел Найдём вторую производную функции

Начала линейной алгебры

Рассмотрим пример из микроэкономики.

В количественной теории полезности предполагается, что потребитель может дать количественную оценку (в некоторых единицах измерения) полезности любого количества потребляемого им товара.

Это означает существование функции полезности TU аргумента Q–количества купленного товара. Введём понятие предельной полезности, как добавочной полезности, прибавляемой каждой последней порцией товара. Далее построим двумерную систему координат, откладывая по горизонтальной оси

 количество потребляемого товара Q, а по вертикальной оси–общую полезность TU, как это сделано на рисунке7. В этой системе координат проведем график функции TU=TU(Q). Точка Q0 на горизонтальной оси означает количество приобретенного товара, величина DQ –добавочный приобретенный товар. Разность DTU=TU(Q0+DQ)–TU(Q0)‑добавочная полезность, полученная от покупки “довеска” DQ. Тогда добавочная полезность от последней приобретенной порции (или единицы количества) товара вычисляется по формуле DTU/DQ (Курс экономической теории. Под общей редакцией проф. Чепурина М.Н. 1995, стр. 122). Эта дробь, как можно видеть, зависит от величины DQ. Если здесь перейти к пределу при DQ®0, то получится формула для определения предельной полезности MU:

 .

Это означает, что предельная полезность равна производной функции полезности TU(Q). Закон убывающей предельной полезности сводится к уменьшению этой производной с ростом величины Q. Отсюда следует выпуклость графика функции TU(Q). Понятие функции полезности и представление предельной полезности в виде производной этой функции широко используется в математической экономике.


Математика примеры решения задач