http://www.vip-doski.ruРука, бесплатные объявления.
Производные гиперболических функций Производная степенной функции Натуральный логарифм Найдём предел Найдём вторую производную функции

Начала линейной алгебры

Если получены два различных набора базисных неизвестных при различных способах нахождения решения одной и той же системы, то эти наборы обязательно содержат одно и то же число неизвестных, называемое рангом системы.

Определители

Вычисление определителя четвертого порядка сводится в худшем случае (если среди элементов нет нулей) к вычислению четырех определителей третьего порядка.

Аналогичным образом вычисление определителя 5-го порядка сводится к вычислению 5-ти определителей 4-го порядка и т.д.

Для того, чтобы получить представление о том, что такое определитель n-го порядка, не прибегая к определению на предыдущей странице, можно поступить так: выучить, как вычисляются определители 2-го и 3-го порядков и как по методу Лапласа сводить вычисление определителя n-го порядка к вычислению определителя n–1-го порядка. Тогда становится понятным, как вычислять определитель 4-го порядка, затем 5-го порядка и т. д.

Из сказанного следует, что вычисление определителя 5-го порядка можно в общем случае свести к вычислению 20-ти(!) определителей 3-го порядка, что очень затрудняет задачу.

Вычисление определителя упрощается, если воспользоваться свойством 5. Пусть D – определитель четвертого порядка:

.

Этот определитель разложим по третьей строке, так как там есть нуль и, что особенно важно, –1. Задача заключается в таком преобразовании определителя D, чтобы получить нули на месте a31 и a33. К первому столбцу прибавим второй столбец, умноженный на –2, а к третьему столбцу прибавим второй столбец, умноженный на –3. Второй столбец, с помощью которого проводились преобразования, остается без изменений.

Таким образом вычисление определителя 4-го порядка сведено к вычислению только одного определителя 3-го порядка:

.

Пусть теперь D — определитель 5-го порядка:

.

Предположим, что мы решили разложить его по первому столбцу. Можно поступить следующим образом. Оставим первую строку без изменений. Вторую строку умножим на 3 и прибавим к ней первую, умноженную на –2. При этом обязательно за знак определителя выносится множитель  (см. свойство 3). Вместо третьей строки пишем сумму третьей и умноженной на  первой. Четвертую строку умножаем на 3 и прибавляем первую, умноженную на –4, опять вынося множитель  за знак определителя. Пятую строку умножаем на 3, прибавляем к ней первую, умноженную на –5 и опять выносим  за знак определителя. Теперь получим

.

Теперь вычисление определителя 5-го порядка сведено к вычислению только одного определителя 4-го порядка.


Математика примеры решения задач