Производные гиперболических функций Производная степенной функции Натуральный логарифм Найдём предел Найдём вторую производную функции

Начала линейной алгебры

Если получены два различных набора базисных неизвестных при различных способах нахождения решения одной и той же системы, то эти наборы обязательно содержат одно и то же число неизвестных, называемое рангом системы.

Введем ряд новых определений.

Нулевой матрицей называется матрица, у которой все элементы – нули. Очевидно равенство A + (–1)A = 0. Здесь в правой части через 0 обозначена нулевая матрица той же размерности, что и матрица A.

Квадратная матрица размера n называется единичной, если все её элементы, стоящие на главной диагонали, равны единице, а все остальные – нули. Единичную матрицу можно определить формулами:

 aij = 1 при i = j;

 aij = 0 при i ¹ j.

Очевидно, что первые три столбца матрицы (3) образуют единичную матрицу.

Единичная матрица, как правило, обозначается буквой E:

 .

Легко проверить справедливость равенств: EA = AE = A. Здесь A – квадратная матрица, и размеры A и E одинаковы.

Пусть A – квадратная матрица. Обратной матрицей к матрице A называется такая матрица A–1, для которой справедливы равенства:

 AA–1 = A–1A = E.

Очевидно, что A–1 – квадратная матрица того же размера, что и матрицаA. Сразу заметим, что не всякая квадратная матрица имеет обратную матрицу.

Поставим задачу: найти обратную матрицу к матрице

 .

Условие

,

где

,

сводится к трём системам уравнений, которые будем решать одновременно, используя метод Жордана-Гаусса. Матрица, представляющая расширенные матрицы всех трёх систем, примет вид

 .

Подвергая её преобразованиям по методу Жордана-Гаусса, последовательно будем получать:

 ÞÞ

 ÞÞ (4)

Как и в предыдущем примере, можно сказать, что три последних столбца образуют искомую матрицу, то есть

 .

Теперь сформулируем правило, по которому находится матрица, обратная к квадратной матрице А размера n.

Нужно выписать матрицу размерности n ´ 2n, первые n столбцов которой образованы матрицей А, а последние n столбцов образуют единичную матрицу Е. Построенная таким образом матрица преобразуется по методу Жордана-Гаусса так, чтобы на месте матрицы А получилась единичная матрица, если это возможно. Тогда на месте матрицы Е получается матрица А–1.

Если матрицу А нельзя методом Жордана-Гаусса преобразовать к единичной матрице, то А–1 не существует. Так матрица

 

не имеет обратной. Читатель может в этом убедиться самостоятельно.


Математика примеры решения задач