Производные гиперболических функций Производная степенной функции Натуральный логарифм Найдём предел Найдём вторую производную функции

Начала линейной алгебры

Таким образом, формула является записью системы m линейных уравнений с n неизвестными в матричной форме. Ниже будет показано, что, записывая систему в сжатом виде, кроме краткости написания мы получаем и другие очень важные преимущества.

Пусть имеются две квадратные матрицы одинаковой размерности:

 .

Требуется найти матрицу X, удовлетворяющую матричному уравнению

 AX = D.

Из правила умножения матриц следует, что матрица X должна быть квадратной матрицей той же размерности, что и матрицы A и D:

  .

Из правила умножения матриц и из определения равенства матриц следует, что последнее матричное уравнение распадается на три системы линейных уравнений:

 ;

 ; (2)

 .

Все три системы (2) имеют одинаковые матрицы коэффициентов, что дает возможность решать их одновременно, введя матрицу

  .

Здесь первые четыре столбца образуют расширенную матрицу первой системы, первые три столбца вместе с пятым столбцом образуют расширенную матрицу второй системы, а первые три столбца вместе с шестым– расширенную матрицу третьей системы.

Если при преобразовании расширенной матрицы системы матрица коэффициентов приводится к трапецеидальному виду и при этом система не получается противоречивой, то система совместна и является неопределенной, то есть имеет бесконечно много решений.
Математика примеры решения задач